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Executive Summary 

In this study, a new dataset and tool were generated describing and mapping street-level infrastructure. 

The presented dataset, StreetAware, is generated from more than 7 hours of synchronized data 

collected at urban intersections by specialized Reconfigurable Environmental Intelligence Platform 

(REIP) sensors developed by the Visualization and Data Analytics (VIDA) Research Center at NYU. 

To demonstrate these key features of the data, we present four uses for the data that are not possible 

on many existing datasets. (1) to track objects using the multiple perspectives of multiple cameras from 

both audio (sound-based localization) and visual modes, (2) to associate audio events with their 

respective visual representations using audio and video, (3) to track the amount of each type of object in 

a scene over time, i.e., occupancy, and (4) to measure the speed of a pedestrian while crossing a street 

using multiple synchronized views and the high-resolution capability of the cameras. 

Next, we introduce Tile2Net–a new open-source tool for automated mapping of pedestrian 

infrastructure using aerial imagery. Tile2Net enables users to download orthorectified sub-meter 

resolution image tiles for a given region from public sources, which are used to generate topologically 

georeferenced sidewalk, crosswalk, and footpath polygons as well as their interconnected centerlines. 

This work is an important step towards a robust and open-source framework that enables 

comprehensive digitization of pedestrian infrastructure, which we argue to be a key missing link to more 

accurate and reliable pedestrian modeling and analyses. By offering low-cost solutions to create 

planimetric datasets we enable less resourceful cities to create datasets describing pedestrian 

environments which otherwise would not be possible at a comparable cost and time. 

The results of this work provide a new rich dataset of street level information as well as a tool for 

mapping pedestrian infrastructure. Both provide a significant contribution for researchers and 

policymakers working on making the street more accessible and usable. 
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Section 1. StreetAware: A High-Resolution Synchronized Multimodal Urban Scene 
Dataset 

Introduction 

Driven by continuous improvements in computational resources, bandwidth optimization, and latency, 

activity-rich traffic intersections have been implicated as excellent locations for smart city intelligence 

nodes. Audio and video sensors located at intersections are, thus, capable of generating large amounts 

of data. Concomitantly, deep learning and edge computation of these data allow, in real-time, the 

geospatial mapping and analysis of urban intersection environments, including moving entities, such as 

pedestrians and vehicles. Intersections are some of the most critical areas for both drivers and 

pedestrians. They are where vehicles and pedestrian paths most frequently cross. Globally, pedestrians 

represent 23% of the 1.35 million worldwide road traffic deaths every year with most events occurring 

at pedestrian crossings. Thus, predicting pedestrian trajectories at intersections and communicating this 

information to drivers or assisted/autonomous vehicles could help mitigate such accidents. 

Understanding an intersection scene has significant implications for self-driving vehicles in particular. 

Figure 1 outlines the concept of enhancing the safety of traffic participants by providing real-time 

insights into out-of-sight events at intersections using a combination of multimodal sensing and edge 

and in-vehicle computing. In this example, pedestrians and (semi)autonomous cars are sensed by sight 

(cameras) and sound (microphones) at intersections, and information is relayed to each car's self-driving 

system. In this process, edge computing and via the cloud helps extract, in real-time, useful information 

from the data. 

Within the navigation system of an autonomous vehicle, it is important that its control system has 

detailed, accurate, and reliable information as it approaches such a scene to determine, for instance, the 

number of road entries into an upcoming crossing or to predict the pedestrian or vehicle trajectories it is 

on a collision course with. For such purposes, urban analytical data should have high precision, 

granularity, and variation (such as multiple perspectives of the same area) to be effectively useful. 

In this study, we present more than 7 hours of synchronized data collected at urban intersections by 

specialized Reconfigurable Environmental Intelligence Platform (REIP) sensors developed by the 

Visualization and Data Analytics (VIDA) Research Center at NYU REIP sensors are capable of dual 5 MP 

video recording at 15 fps as well as the 12-channel audio at 48 kHz for the recording of pedestrian and 

vehicle traffic at various locations. We selected three intersections in Brooklyn, New York, with diverse 

demographic, urban fabric, and built environment profiles and equipped each with four REIP sensors. 

The sensors were placed at each corner of the intersection and recorded the dynamic of pedestrian and 

vehicle interaction for several 40 min sessions, resulting in a total of approximated 2 TB of raw 

audiovisual data. The data were synchronized across all sensors with high accuracy for both modalities 

(one video frame and one audio sample, respectively) using a custom time synchronization solution 
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detailed later. High-synchronization is important so that events that happen across cameras and 

between video and audio can be viewed and analyzed together with reduced effort, and with 

confidence, those events actually occurred at the time inscribed in the data. 

Figure 1. Illustration of the basic concept of combining multimodal sensors at critical nodes 
(e.g., intersections) with on-device and in-vehicle computing capabilities to provide greater 

awareness to urban traffic participants. 

The presented dataset, which we call StreetAware, is unique to other street-level datasets such as 

Google Street View because of the following combination of characteristics: 

- Multimodal: video, audio, LiDAR;

- Multi-angular: four perspectives;

- High-resolution video: 2592 x 1944 pixels;

- Synchronization across videos and audio streams;

- Fully anonymized: human faces blurred.

To demonstrate these key features of the data, we present four uses for the data that are not possible 

on many existing datasets. (1) to track objects using the multiple perspectives of multiple cameras from 

both audio (sound-based localization) and visual modes, (2) to associate audio events with their 

respective visual representations using audio and video, (3) to track the amount of each type of object in 

a scene over time, i.e., occupancy, and (4) to measure the speed of a pedestrian while crossing a street 

using multiple synchronized views and the high-resolution capability of the cameras. 
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The contributions listed in this chapter include: 

- The StreetAware dataset, which contains multiple data modalities and multiple synchronized

high-resolution video viewpoints in a single dataset;

- A new method to synchronize high-sample rate audio streams;

- A demonstration of use cases that would not be possible without the combination of features

contained in the dataset;

The data presented here will allow other researchers to carry out unique applications of machine 

learning to urban street-level data, such as pedestrian-vehicle interaction modeling and pedestrian 

attribute recognition. Such analysis can subsequently help inform policy and design decisions made in 

the context of urban sensing and smart cities, including accessibility-aware design and Vision Zero 

initiatives. Among the other possibilities we discuss later, further analysis of our data can also shed light 

on the optimal configuration needed to record and analyze street-level urban data. 

Related Work 

Datasets 

A handful of related datasets exist. The first is the popular Google Street View, combining street-level 

photography with navigation technology. Publicly available but not entirely free, Google Maps Street 

View includes an API and extensive street-level image coverage throughout much of the World's 

roadways. Unlike StreetAware, Google Street View is a collection of disparate images instead of 

stationary video recordings of specific places. Moreover, Google Street View often has multiple 

viewpoints that are in close proximity to one another, but they do not overlap in time. Therefore, 

synchronization across multiple views is not possible. Another dataset is Mapillary. Mapillary street-level 

sequences contain more than 1.6 million vehicle-mounted camera images from 30 major cities, distinct 

cameras, and different viewpoints and capture times, spanning all seasons over a nine-year period. All 

images are geolocated with GPS and compass, and feature high-level attributes such as road type. Again, 

these data are not video or synchronized and do not include audio. The next dataset is Urban Mosaic, 

which is a tool for exploring the urban environment through a spatially and temporally dense data set of 

7.7 million street-level images of New York City captured over the period of one year. Similarly, these 

data are image-only and unsynchronized across views. Another street-level urban data set is SONYC. 

SONYC consists of 150 million audio recording samples from an acoustic sensor network and is aimed at 

the development and evaluation of machine listening systems for spatiotemporal urban noise 

monitoring. However, SONYC does not contain visual information. Finally, there is Urban Sound & Sight 

(Urbansas), which consists of 12 h of unlabeled audio and video data along with 3 h of manually 

annotated data, but does not contain multiple views. StreetAware is unique in that it combines 

stationary, multi-perspective, high-resolution video and audio in a synchronized fashion. 
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Deep Learning Applications 

A number of recent studies have explored the use of deep learning for detecting and analyzing objects in 

street-level audio and video data. A study by Zhang et al. developed an approach to automatically detect 

road objects and place them in their correct geolocations from street-level images, relying on two 

convolutional neural networks to segment and classify. Doiron et al. showed the potential for computer 

vision and street-level imagery to help researchers study patterns of active transportation and other 

health-related behaviors and exposures. Using 1.15 million Google Street View (GSV) images in seven 

Canadian cities, the authors applied PSPnet, and YOLOv3 to extract data on people, bicycles, buildings, 

sidewalks, open sky, and vegetation to create associations between urban features and walk-to-work 

rates. Charitidis et al. released a paper in 2023 in which they utilized several state-of-the-art computer 

vision approaches for object detection. Object detection systems have also been specifically developed 

for the collection and analysis of street-level imagery in real-time. In “Smart City Intersections: 

Intelligence Nodes for Future Metropolises”, Kostec et al. detail intersections as intelligence nodes using 

high-bandwidth, low-latency services for monitoring pedestrians and cloud-connected vehicles in real-

time.  

Pedestrian speed and trajectory prediction are some of the primary computer vision goals in the urban 

data analytical community, especially in the field of advanced driver assistance systems. The 

performance of state-of-the-art pedestrian behavior modeling benefits from recent advancements in 

sensors and the growing availability of large amounts of data. A study by Kuo et al. compared 

estimations of pedestrian speed from a classical model and a neural network in corridor and bottleneck 

experiments, with results showing that the neural network can better differentiate the two geometries 

and more accurately estimate pedestrian speed. Ahmed et al. sought to use a fast region-convolutional 

neural network (Fast R-CNN), and a Single Shot Detector (SSD) for pedestrian and cyclist detection based 

on the idea that automated tracking, motion modeling, and pose estimation of pedestrians can allow for 

a successful and accurate method of intent estimation for autonomous vehicles. Other related studies in 

the literature include applying deep learning techniques for the prediction of pedestrian behavior on 

crossings with countdown signal timers, mapping road safety from street view imagery using an R-CNN, 

and identifying hazard scenarios of non-motorized transportation users through deep learning and 

street view images in Nanjing, China. 

The StreetAware Dataset 

REIP Sensors 

A multi-view requirement of our data collection could easily be satisfied with off-the-shelf video 

surveillance systems that often include a set of wireless IP cameras. These cameras transmit their video 

feeds to a central data storage location (in the form of a local hard drive) which can sometimes be 
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synchronized with a cloud but is not required for the system's operation. The cameras also include a 

night mode which can prove beneficial during low-light conditions. However, these cameras rarely 

provide audio because of privacy concerns and rely on manually configured timing information or NTP 

(network time protocol) for time-stamping of the video. The latter is a significant barrier to a multi-view 

analysis of fast-moving objects such as cars. A car traveling at 40 mph covers more than a meter of 

ground per frame when recorded at 15 fps. Therefore, frame-accurate video synchronization is also a 

requirement for our dataset and, unfortunately, cannot be met with off-the-shelf security cameras, 

which are also often operating at reduced frame rates due to limited storage. 

There exist commercial motion tracking systems that use high-speed cameras synchronized by NTP. 

Although these cameras provide high temporal resolution and accuracy for video, they would be 

insufficient for the synchronization of audio data (sub-millisecond timing accuracy required). 

Furthermore, such cameras are typically designed for indoor infrared light imaging, are costly, and rely 

on an Ethernet interface for synchronization and data transfer which makes them impractical for larger-

scale urban deployments. Ultimately, the sensors used in this study are custom-built in our lab. Our 

sensors (REIP sensors) provide high-resolution video and audio recording with an in-built 

synchronization solution. 

Data Collection 

Three intersection locations were selected to acquire the dataset with different road configurations and 

pedestrian demographics as described below: 

- Commodore Barry Park: This intersection is adjacent to a public school. It has a low-to-medium

frequency of traffic making it an uncrowded intersection.

- Chase Center: This intersection is adjacent to the Chase Bank office building within Brooklyn's

MetroTech Center. It is also an active pedestrian intersection.

- DUMBO: The intersection of Old Fulton Street and Front Street is under the Brooklyn Bridge.

Being a tourist destination, this intersection is the busiest of the three. Because of smaller

crosswalks and heavy traffic, it provides challenges such as occlusion and a diverse range of

pedestrian types.

Overhead map locations and the sensors' positions for the recording sessions at Commodore Barry Park 

as an example are shown in Figure 2. We used four REIP sensors at each intersection, one placed at each 

corner of the intersection. We recorded several 30-45 min long sessions at each intersection. Four at 

Commodore Barry Park, three at Chase Center, and four at DUMBO. This results in about 200 GB of raw 

audiovisual data recorded by each sensor per location (limited by the sensor's max storage capacity of 

250 GB). In total, we collected approximately 2 TB of raw data. 
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Figure 2. Illustration of the sensor positions and data types at the Commodore Barry Park 
intersection.  

The data acquisition pipeline of the sensors is shown in Figure 3. The output of the sensor's data 

acquisition pipeline contains three types of data: 500 MB chunks of video data (approximately one 

minute of recording, depending on the intersection), JSON files containing batches of timestamps for 

each frame in the video data chunks, and 5-second-long chunks of audio data with its timing information 

embedded as extra audio channels. We spare the users from working with the sensor's raw data by 

preprocessing it, including anonymization and synchronization. We also use a space-efficient video 

codec H.264 instead of the camera's original MJPEG data stream. Table 1 summarizes the specifications 

of the processed dataset that we are releasing. 

Figure 3. The sensor's data acquisition pipeline built using software blocks available in the 
REIP SDK. It contains separate tasks for each camera and the microphone array. The LiDAR 

data acquisition is performed on a separate machine (orchestrator laptop). 
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Table 1: Dataset specifications after processing, featuring 3 data modalities (audio, video, and 
LiDAR) with synchronized footage. 

Feature Specification 
Number of geographic locations 3 

Number of recording sessions 11 
Typical recording length 30-45 min

Total unique footage time 465 min (7.75 h) 

Total number of image frames ~403,000 
Video resolution 2592 X 1944 pixels 

Number of data modalities 3 
Synchronized and anonymized True 

Video synchronization tolerance 2 frames 

Audio synchronization tolerance 1 sample 
Total audio & video size 236 GB 

Total LiDAR size 291 GB 
Total size 527 GB 

Data Synchronization 

In this section, we detail our synchronization techniques, first for audio, then for video data modality. 

The synchronization techniques are independent for each modality. 

Audio: Audio synchronization is a challenging task because audio data is being sampled at a very high 

rate, 48 kHz in the case of our sensors. Furthermore, the speed of sound wave propagation in the air is 

343 m/s which translates into a synchronization accuracy requirement of less than one millisecond, 

across all sensors, for any meaningful audio-based sound source locations to work. Such accuracy 

cannot be achieved by simply attaching a timestamp to the chunks of audio provided by the driver 

because of the large 'jitter' of such timestamps caused by the random operating system (OS) interrupts 

on the computing platform. Therefore, the synchronization information must be embedded into the 

audio data itself before it even makes it to the audio driver of the OS. In this subsection, we introduce a 

novel method for high-accuracy audio synchronization by means of embedding a special signal into a 

dedicated audio channel of the audio interface. 

The radio module of each sensor is receiving a global timestamp from a master radio transmitting it at a 

rate of 1200 Hz. Unlike the operating system of the computing platform, the microcontroller operating 

the radio module via Serial Peripheral Interface (SPI) can be programmed to process the incoming data 

packets from the master radio in a very deterministic way. Specifically, the packet arrival interrupt 

request (IRQ) signal from the radio module causes the MCU to interrupt its current routine and execute 

a function that decodes the latest timestamp from the data payload of the packet and phase-adjusts the 
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MCU's internal timer to match the master radio's clock. The jitter of the continuously adjusted slave 

clock is less than 1 µs with the nRF24L01+ 2.4 GHz radio module. The timer in turn generates a special 

synchronization signal connected to one of the inputs of the MCHStreamer device that we use as an 

audio interface. 

We are using a simple UART-like serial protocol with one start bit, a 32-bit payload, and a more than 200 

audio sample-long stop bit to generate the audio synchronization signal. The start bit and payload bits 

are five audio samples wide for more reliable encoding. Such a signal is easy to decode during audio 

processing, and a single audio sample synchronization accuracy is achieved because the start bit of the 

sequence is aligned with the time of arrival of the timestamp from the master radio, and the micro-

controller has a deterministic delay when processing this information. 

Video: Video recording is inherently occurring at a much lower sampling rate than audio. For instance, 

the cameras in REIP sensors are configured to record at 15 fps. That corresponds to an approximately 67 

ms period between consecutive frames. The radio module receives a new global timestamp every 0.83 

ms, which is almost two orders of magnitude more frequent. Therefore, it makes sense for video 

recording to timestamp each frame as it is being received by the driver and calibrates the latency 

between the moment of assignment of this timestamp and when the frame is actually exposed instead 

of inventing a way of embedding the timing information directly into the image data during exposure as 

we did for audio. However, this approach comes with new challenges, such as timestamp jitter and lost 

frames. 

There are three timestamps assigned to each video frame: (1) the GStreamer timestamp, which starts 

from zero and is defined by the camera driver upon arrival of the frame into the queue from the USB, (2) 

the Python timestamp representing the current system time which is added using the time.time() 

function when the frame is released by GStreamer into the data acquisition and processing pipeline 

powered by REIP SDK, and (3) the Global timestamp added to the frame metadata at the same time as 

the Python timestamp which is the latest global timestamp communicated to the global time block from 

the MCU via USB 1.1 interface, introducing extra jitter.  

We developed a method for reducing the jitter of global timestamps to virtually zero before rendering 

the synchronized video streams (Figure 4). The main source of timestamp jitter is operating system 

interrupts that happen when the computing platform, for example, needs to process various I/O events 

or perform memory management. That is why GStreamer timestamps have the least amount of jitter 

because they are defined when the OS handles USB 2.0 data transfers from the camera. That is also why 

we are starting with GStreamer timestamps to reliably detect if and when there are any frames lost by 

looking for gaps larger than the expected period of the camera's frame rate. After correcting for lost 

frames, we then convert these timestamps into a global timeline through a couple of regressions 

incorporating the information from other types of timestamps without adding jitter. 
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Figure 4. Diagram illustrating timestamp processing. 

We start with the least jittery GStreamer timestamps and identify any lost frames so that we can 

reconstruct the original timeline and average period for the saved frames. We then convert these 

reference timestamps into a global timeline through a series of regression steps that incorporate the 

information from other kinds of timestamps without adding jitter. 

In addition to correcting for lost frames and eliminating jitter, our method is also fixing any queue 

overflow issues that often result in the jamming of multiple frames one after another with very similar 

Python and Global timestamps. This happens when the queue is emptied out quickly after a prolonged 

operating system interrupt. Another less common issue is when the frames saved to the disk get 

corrupted due to high data flow or during the copying of the data from the sensors to a server. The 

solution requires the corresponding timestamps to be deleted from the metadata, and the associated 

non-decodable frames are considered lost.  

To further validate the video synchronization, we render a surveillance-style mosaic video using 

processed frames from all eight cameras at a given intersection and a global timeline produced by the 

synchronization of timestamps. Figure 5 shows a mosaic of the frames at the moment at the Chase 

Center intersection. Essential for many analysis applications, at any given moment, the recording of all 

traffic remains in sync from multiple viewpoints. Frames for which a camera did not successfully record 

data are temporarily made black in the camera's associated block in the mosaic. 



10 
Exploring AI-based Video Segmentation and Saliency Computation to 

Optimize Imagery-acquisition from Moving Vehicles 

Figure 5. Mosaic rendering of the synchronized frames from recording session one at the 
Chase Center intersection that can be played as a video.  

Four sensors with two cameras each (numbered in the corners) provide eight different views for 

comprehensive analysis of the intersection. If a camera did not successfully record during a particular 

frame, its block is turned black, such as the left camera of sensor 4 in this example. 

Use Cases 

In this section, we will demonstrate four use cases highlighting the potential applications of 

StreetAware. First, we present two examples of how such data can enhance pedestrians' safety in large 

urban areas by (1) informing pedestrians and incoming traffic of occluded events using multiple sensors 

and sound-based localization, and (2) associating audio events (such as the presence of loud engines) 

with their respective visuals. Second, we present easily quantifiable metrics that can be extracted from 

the data using the \name infrastructure framework: (3) calculating object counts (occupancy) over time, 

and (4) measuring pedestrian speed during crosswalk traversal. 

Audio Source Localization 

As the number of sensors deployed in urban environments increases, cities have the potential to 

become more human-centered by prioritizing pedestrians over cars. Adaptive traffic and pedestrian 

signal timing is one example of how an intelligent sensing platform can be used to provide a safer 

environment for pedestrians. By making the signal timing adjustable to the volume of foot traffic as well 

as the needs of different groups of people, we can allocate longer signal timing to, for example, crowded 

intersections or pedestrians with special needs such as the elderly, pregnant, or those with vision 
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impairments. Most traffic monitoring systems use one or two fixed cameras for each intersection. 

However, the complex configuration of intersections in large cities makes it challenging for one or two 

cameras to count and detect every traffic participant at a busy intersection. They have inherent 

limitations of fixed field of view and susceptibility to occlusions. 

In this first use case, we demonstrate how a synchronized multisensor setting can leverage a data 

modality, such as audio, to localize sound-emitting traffic participants and reduce the chance an object 

is completely obstructed by another. The ability of the sensors to “listen” as well as “see” allows the 

sensor network to remain resilient against occlusions and dead zones. Figure 6 shows an example of 

detecting the position of a bicyclist using sound, regardless of whether or not the bicyclist is in any of 

the cameras' field of view thanks to the diffraction property of the sound waves. In order to reconstruct 

the position of the bicyclist ringing the bell, we first annotate the high amplitude peaks, in the audio 

data, synchronized using the common time scale as reconstructed from the dedicated audio channel 

with the serialized timestamps. With the known sensor positions, one can find the sound source position 

at given time by minimizing the errors: 

𝒑, 𝒕 = 𝐚𝐫𝐠 𝐦𝐢𝐧
𝒑,𝒕

∑

4

𝑖=1

(∥ 𝑝 − 𝑝
𝑖 

∥  − 𝑐 ∙  |𝑡 −  𝑡𝑖|)2 ,

All four sensors must hear the sound for this to be a well-posed problem. The results are shown in 

Figure 6 and are in good agreement with the video footage from the same sensors. There are examples 

of when audio-based localization was not possible because of noise pollution by a bus and vice versa 

when the object was out of the field of view of the cameras but could still be heard which illustrates the 

benefits of such a complementary multimodal approach. This audio-based sound source localization 

would not be possible without the synchronization technique presented in this paper. 
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Figure 6. Audio-based localization of a bicyclist crossing the street at Chase Center and ringing 

the bell repeatedly (magenta points).  

In chronological order: Sensor 2 can see the bicyclist approaching the intersection, but localization of the 

bell ring is not possible because two sensors were occluded by a noisy bus; Sensor 1 view confirms the 

position of the bicyclist taking a right turn; Sensor 4 footage reveals the reason for the bicyclist's curved 

trajectory---the black car did not stop to yield the right of way; Eventually, the bicyclist is no longer in 

the field of view of Sensor 3, but can still be localized thanks to the diffraction of the bell's sound waves. 

Occupancy Tracking and Pedestrian Speed 

Stakeholders interested in monitoring the level of activity and quantity of pedestrians and traffic in an 

area could make use of StreetAware. Here, we present an example in which we evaluate the occupancy 

of one of the intersections during a recording session. First, the dataset is evaluated with HRNet, an 

object detection, human pose estimation, and segmentation algorithm. Adapted from the Faster R-CNN 

network, HRNet is capable of performing state-of-the-art bottom-up segmentation via high-resolution 

feature pyramids. The network is trained on the COCO dataset. We detect six classes: person, car, 

bicycle, truck, motorcycle, and bus.  
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Figure 7. Chase Center intersection occupancy by object type during a recording session in the 
afternoon. Purple lines representing people and green lines representing cars on the top 

chart.  

In the figure, the four sensors collecting data during this session are represented by circles. There is a 

significant increase in the pedestrian count (blue) around 5 p.m. as people leave work. Moreover, it is 

possible to detect traffic light cycles based on the ratio of the number of pedestrians versus vehicle 

counts. 

Using this detection framework, Figure 7 shows the total count of the various urban scene entities 

throughout an entire recording session at the Chase Center intersection. We intentionally choose this 

particular recording session because it was conducted around 5 p.m. when people are finishing their 

workday and traveling home. This activity results in a spike in pedestrian and car traffic. There are 

roughly three times as many pedestrians counted (most crossing a street) toward the end of the 

recording than at the beginning. This trend also inversely correlates with car count, presumably due to 

cars yielding the right-of-way to pedestrians. We do not observe as much change in the number of cars 

or other motorized vehicles because this intersection is typically more consistently busy throughout the 

day and there is limited space along the street curbs to park cars compared to pedestrians on sidewalks. 

Parked cars present a certain level of static background count for the car object class. Measuring and 

predicting pedestrian behavior such as their speed and trajectory are of interest to the computer vision 

and urban design research communities.  
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Discussion 

In this study, we collected unique data about traffic and pedestrians from three urban intersections 

using customized high-resolution audio-video sensors. The novel data includes multiple modalities 

(audio, video, and LiDAR) with highly accurate temporal information and synchronization. Since the data 

were recorded in New York City, many demographics are captured. This is particularly important since 

some of these groups, such as wheelchair users and people with varying levels and types of disabilities, 

are absent from large-scale datasets in computer vision and robotics, creating a steep barrier to 

developing accessibility-aware autonomous systems. Identifying pedestrians with disabilities, the 

qualities of their behavior, and ease at traversing the sensed urban environment is an area of possible 

exploration with datasets such as this one. 

Overall, the REIP sensors have demonstrated great versatility in data acquisition pipelines and operating 

conditions. They even withstood, without damage, a sudden rain incident during one of the recording 

sessions at Commodore Barry Park. The majority of the sensor's hardware is enclosed within an 

aluminum weatherproof housing with heat sinks, however, we still experienced occasional periods of 

lost frames, even during operation in shadows, due to the random operating system interrupts and 

throttling of the CPUs. Therefore, any long-term deployments would need to account for these issues in 

a comprehensive way. 

The data presented in this study are limited in a few ways. First, the geographic coverage is narrow. 

Though the activity at each site is somewhat varied, ultimately, data were only collected at three 

intersections in a single borough in a single highly-developed city in the United States. Second, 

compared to some other available datasets, StreetAware lacks diverse environmental conditions such as 

nighttime, precipitation, and fog. However, we did preserve some of the more challenging recording 

sessions where select sensors experienced an increased amount of occlusion from vegetation during 

windy conditions. Moreover, third, the data are quite raw---the audio and video recordings are not 

labeled (e.g., objects, actions, sound sources, etc.) and the LiDAR files provided are unprocessed. In its 

current form, a user would not be able to query the data for information or have an idea of what is 

happening over time in a scene without manually inspecting the data or performing further processing 

and analysis. 

Conclusion 

In this chapter, we presented the StreetAware dataset, which contains synchronized multi-perspective 

street-level audio and video in a single dataset. We also presented a new method to synchronize high-

sample rate audio streams and demonstrated unique use cases for the data; in the process, we describe 

the limitations and real-world implementation of REIP sensors. 
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Section 2. Mapping the Walk: A Scalable Computer Vision Approach for Generating 
Sidewalk Network Datasets from Aerial Imagery 

Introduction 

After a century of car-oriented urban growth, cities around the world are implementing policies and 

plans that aim to make their neighborhoods and streets more walkable and transit-oriented. Renewed 

attention to walkability is driven simultaneously by the impending climate crisis, public health concerns, 

and inter-city economic competition. With more than a third of all CO2 emissions attributable to the 

transport sector, it has become clear that climate goals will not be reached unless urban populations 

start driving less and relying more on walking and public transportation. From a health perspective, 

more walkable cities have been found to have lower obesity and inactivity-related conditions, 

respiratory diseases, and lower overall public health expenditures. Economically, walkable and transit-

served city environments have also become an important draw for a competitive workforce and now 

command some of the highest-priced real estates in American cities. 

Despite the growing, multi-pronged importance of pedestrian-oriented city design, the necessary 

geospatial data for pedestrian infrastructure mapping and modeling remains far behind vehicular 

infrastructure data. Digital mapping of vehicular road networks expanded rapidly in the 1990s, led by 

Federal legislation (President Clinton 1994), municipal governments’ investments, as well as private 

companies such as Navteq and TomTom that operationalized roadway mapping in cities across the 

world. Assembly and wide-scale dissemination of such data has been instrumental to numerous 

technologies that use road network data as a key input: mapping and routing applications (e.g., Google 

Maps, TransitApp), transportation service technologies (e.g., Uber, Amazon), urban transportation 

models and policies (e.g., metropolitan and urban Travel Demand Models, congestion charging systems 

in cities including London, Singapore, and Stockholm), data specification standards (e.g., Google’s 

General Transit Feed Specification, and the City of Los Angeles’ Mobility Data Specification). 

Transportation debates are often skewed towards topics rich in data – vehicle throughput, for instance, 

which is monitored on individual streets in many cities, is a key parameter for new road design and 

investment. Not only is comparable data describing pedestrian throughput on sidewalks typically 

unknown, the locations and types of sidewalks are also rarely mapped, contributing to systemic 

underinvestment in the pedestrian realm. When pedestrian accessibility is analyzed, it is often done 

using simplified road-centerline data, not the actual sidewalks, footpaths, and road crossings. 

A number of studies have highlighted the inadequacy of using street-centerline networks for pedestrian 

routing, which can lead to inaccuracies (e.g., streets with no sidewalks), simplifications (e.g., 

assumptions that buildings can be directly accessed on both sides of a street centerline, while in reality 

crossing a street is only allowed at certain locations), and misrepresentation (e.g., assuming pedestrian 
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connections based on vehicular routes, where there are none). For instance, Chin et al., who examined 

pedestrian access in Perth, Australia, found up to 120% difference in pedestrian connectivity using road 

centerlines as opposed to sidewalk centerlines. Not only can road-network data be imprecise for 

pedestrian needs, it can also be hazardous for the more vulnerable street users, such as vision-, hearing- 

or mobility-challenged travelers, wheelchair-bound travelers, the elderly, and the young. Lack of 

accurate sidewalk routing data threatens their independence and decreases their quality of life. 

To address these challenges, we introduce Tile2Net–a new open-source tool for automated mapping of 

pedestrian infrastructure using aerial imagery. Tile2Net enables users to download orthorectified sub-

meter resolution image tiles for a given region from public sources, which are used to generate 

topologically georeferenced sidewalk, crosswalk, and footpath polygons as well as their interconnected 

centerlines. By using available official network and polygon data as a ground truth, we would like to 

investigate to what extent the automatically generated networks can produce accurate results. Our goal 

is to map pedestrian networks “as they are” rather than trying to improve the network connectivity 

artificially. To achieve this, we train and implement a semantic segmentation model that can detect 

these pedestrian infrastructure elements from orthorectified aerial tiles. We pilot test the approach in 

Manhattan, NY, Washington, DC, Boston, and Cambridge, MA, and report the accuracy measures in each 

of these cities. This work is an important step towards a robust and open-source framework that 

enables comprehensive digitization of pedestrian infrastructure, which we argue to be a key missing link 

to more accurate and reliable pedestrian modeling and analyses. By offering low-cost solutions to create 

planimetric datasets we enable less resourceful cities to create datasets describing pedestrian 

environments which otherwise would not be possible at a comparable cost and time. 

In this chapter, we make the following contributions: 

1. We present the design and implementation of Tile2Net as an end-to-end, open-source tool for

creating large-scale pedestrian networks from orthorectified aerial imagery.

2. We show the calibration procedure of a high-performing scene classification model for detecting

sidewalks, crosswalks, and footpaths. We have custom trained Tile2Net on around 20,000

detailed images in Cambridge, New York City, and Washington, where detailed GIS data of

pedestrian infrastructure was available. Our GitHub repository includes, to the best of our

knowledge, the first publicly available scene classification model for detecting sidewalks,

crosswalks, and footpaths from orthorectified aerial tiles.

3. We discuss how adjustable TIle2Net is to different city environments, offering various settings to

finetune the model on new data based on local environmental characteristics.
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Related Work 

Map Generation 

At least five different methods for mapping sidewalk infrastructure can be distinguished in existing 

literature and practice, with additional combinations, as depicted in Figure 8. 

Figure 8. Different methods of map generation.  

Each box presents the main data sources (shaded parts), as well as the strengths (+) and weaknesses 

(-) of each method. The last box highlighted in orange denotes the method used in this paper. 

First, physical site surveys and manual aerial image surveys have been used in a number of cities to 

develop datasets on pedestrian facilities. This involves human tracing of observable sidewalks and 

crosswalks from georeferenced aerial imagery, combined with on-the-ground observation and 

validation. Such mapping efforts can produce accurate and high-quality results, but they can also be 

prohibitively labor-intensive and difficult to scale across large regions. In a recent study, 6,400 

intersections in San Francisco were manually reviewed and classified based on the crosswalk presence 

and condition, which took 90 hours for a researcher to complete.  

Second, network buffering uses a geospatial road centerline network as a reference, which is offset on 

both sides to generate polygons whose boundaries approximate the right-of-way of the roadway. 

Boundaries of the resulting polygons are considered as approximate locations of sidewalk segments, 

assuming that (1) pedestrian path segments only exist along roads, (2) sidewalks exist along both sides 

of selected roads, and (3) crosswalks are located at every intersection.  
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Third, pedestrian pathways have also been identified from Global Positioning System (GPS) trajectories 

of pedestrian movement. This can include data from GPS tracking devices that are handed out to 

consenting participants or collected from their smartphone tracking App. Third-party data aggregators, 

such as StreetlightData and Cuebiq collect GPS trace data from hundreds of different Apps that track 

their users’ location history. Once collected, GPS traces can be merged, simplified, and joined into 

contiguous network datasets. The results can effectively illustrate where people (or at least App users) 

actually walked, but they may ignore segments not frequented by smartphone or App users.  

The fourth category uses airborne Light Detection and Ranging (LiDAR) point cloud data. LiDAR devices 

use active sensing and can be mounted on mobile objects such as planes and drones. In general, three 

main methods have been used for processing LiDAR point cloud data to extract road and sidewalk 

features: 1) geometry-based methods, which use prior knowledge of unique geometrical shapes and 

measurements of urban ground elements, 2) reflectance-based methods,  which utilize the reflectance 

intensity of different object classes to classify them, 3) scan-based methods, which take advantage of 

the scanning pattern to connect results from consecutive scans into a continuous boundary to refine 

object segmentation. The resulting data represent sidewalks as vector lines or polygons that can be both 

accurate and scalable. However, the limited availability of spatially dense and open-access LiDAR data 

has constrained this approach to relatively few cities overall. 

Fifth, and in line with our work, computer vision techniques have recently been deployed in a limited 

number of studies to detect pedestrian infrastructure from aerial or satellite images. Among computer 

vision techniques, semantic segmentation has been shown to result in reasonably accurate detection 

and localization of infrastructure elements. This method makes dense predictions, inferring labels for 

each pixel of an image, hence, giving each one a semantic meaning. Although semantic segmentation 

has been broadly used to detect roads and building footprints from aerial or satellite images and to 

create road networks It has not been widely implemented for sidewalk and crosswalk mapping so far, 

possibly due to technical challenges and costs involved in training robust models. Existing examples of 

sidewalk and crosswalk detection models using aerial or satellite images suffer from relatively low 

prediction accuracy. To train semantic segmentation models, densely annotated labels are needed, 

which are often labor-intensive and costly to prepare. Consequently, in applying semantic segmentation 

models to urban context, researchers often forego retraining or fine-tuning their models on target 

datasets and rather rely on publicly-available pre-trained datasets such as CityScapes, Mapillary, and 

ADE20K. Relying on pre-trained models, not specific to the task, limits analysis to the classes included in 

those datasets. Further, pre-trained models not fine-tuned on domain-specific data can yield suboptimal 

performance. Compared to roads and buildings, detecting sidewalks, footpaths and crosswalks is more 

challenging since they constitute a relatively small portion of the visual field, and their detection can be 

further inhibited by occlusion from shadow, vegetation, and structures. Hence, choosing the right 

network architecture that can preserve local details while accounting for global image context is crucial. 
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Semantic Segmentation 

The feature detection mechanism we use in Tile2Net relies on semantic segmentation. Research on 

automated vehicles has created significant demand for fast and efficient algorithms that can extract 

both high and low-level information from urban scenes, leading to notable improvements in the field of 

scene parsing, specifically pixel-wise classification, commonly referred to as semantic segmentation. 

Early work incorporated multi-resolution processing into segmentation architectures to improve 

performance over a static resolution approach. This has been followed by rapid developments in multi-

scale pyramid-style networks. In particular, HRNet connects high-to-low resolution convolutions via 

parallel and repeated multi-scale fusion to better preserve low-resolution representations alongside 

high-resolution ones in comparison to previous work. A variant of HRNet, HRNet-W48, which has shown 

superior performance across segmentation benchmarks such as Cityscapes and Mapillary Vista, is used 

as a key component of our segmentation framework described below. 

Tile2Net 

Tile2Net is an end-to-end open-source Python tool that downloads and combines orthorectified tiles 

from publicly available data sources, detects street elements from these tiles, creates sidewalk, 

crosswalk, and footpath polygons, and ultimately generates pedestrian networks. We chose Python 

because of its popularity among data analysts and urban scientists, with a myriad of popular packages 

that can be used in conjunction with Tile2Net for richer network analytics, including OSMnx, NetworkX, 

and Geopandas. Tile2Net’s functionalities are exposed through an easy-to-use API that can be used in 

interactive environments, such as Jupyter Notebooks. 

Tile2Net is designed to work with slippy map tiles, a system that uses Web Mercator coordinates and 

constructs a map from 256x256-pixel square tiles, referenced by the tile coordinates and a zoom level. 

At successively higher zoom levels, the number of tiles increases by a factor of four. The tool then 

follows this system and works at grid and tile levels--i.e., for a region of interest, it defines a slippy map-

based grid of tiles. The user can initialize this process in two ways: specifying an address (e.g., 

Washington Square Park, Manhattan, NYC, USA) that then is geocoded using the Nominatim API, or 

passing the top-left and bottom-right coordinates of the bounding box of the region. Tile2Net will create 

the tile grid and provide a number of functionalities for users, such as downloading the orthoimagery 

tiles that fall within its bounding box or merging tiles to create larger ones. Then, Tile2Net will use the 

trained model to detect roads, sidewalks, crosswalks, and footpaths in each tile and create geo-

referenced vector data (polygons and networks) from segmentation results, which are initially in raster 

format. 

We train the detection model on thousands of orthorectified aerial tiles from Cambridge, MA, New York 

City, NY, and Washington, DC, which allows the tool to be used for extracting such data in the North 
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American context, or other cities with similar urban fabrics, without needing any further training. 

However, Tile2Net also allows users to retrain the feature detection model in new contexts, where 

pedestrian infrastructure may visibly differ from our initial cities. For users interested in modifying the 

model or further training it, Tile2Net offers the capability to automatically create labels (given 

authoritative data). This can substantially reduce a common bottleneck--preparing thousands of labels 

manually. Retraining can be initialized with our trained weights, which can lead to significant time and 

cost savings. 

Figure 9. The proposed network generation pipeline: 
a) Unlabeled orthorectified tiles are passed through the semantic segmentation model for prediction, b)

The model detected sidewalks (blue), crosswalks (red), and roads (green) in the input tiles, c) The 

sidewalks and crosswalks of the prediction results (raster format) are converted into georeferenced 

polygons, d) The line representation of the pedestrian network generated from polygons. 

Figure 9 illustrates the Tile2Net data processing pipeline. We combine a semantic segmentation 

approach with a raster-to-polygon conversion process to generate polygon shapefiles of pedestrian 

infrastructure elements and, separately, a polygon-to-centerline conversion process to produce a 

topologically interconnected network of pedestrian centerlines. In the following, we start by describing 

the data we used and the procedures we chose to detect the features of interest in our training 

procedures. 

Detecting sidewalks, footpaths, and crosswalks from aerial imagery 

Our semantic segmentation model takes an input image, and outputs a feature map showing whether 

and where the objects of interest are recognized in the image tile. For this task, we adopted the 

Hierarchical Multi-Scale Attention model. The idea behind multi-scale architecture is to combine the 

predictions from multiple scales of the input image. Fine details (e.g., narrow footpaths, poles in the 

background, etc.) can be best detected in higher zoom levels or larger images, and large objects with 

less details (e.g., roads) are best detected at a lower zoom level. The model learns which image scale 

works best for different objects and uses that scale to make the prediction.  

The hierarchical architecture of our semantic segmentation network makes it possible to choose 

different scales during the inference. In our experiments, using 512x512, 1024x1024, and 2048x2048 

pixel tiles, the best results were achieved using 1024x1024 pixel tiles, where the model had enough 
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context to distinguish between different classes. Images should be in zoom levels where sidewalks can 

be visible; for instance, sidewalks are not visible from 3-meter/pixel images. 

We used HRNet-W48 with Object-Contextual Representations as the backbone, since HRNet maintains 

twice as high a resolution representation as other popular backbones such as WiderResnet38. The 

computed representation from HRNet-W48 is fed into the OCR module, which computes the weighted 

aggregation of all the object region representations to augment the representation of each pixel. The 

augmented representations are the input for the attention model. For the primary loss function, we 

used Region Mutual Information (RMI) loss, which accounts for the relationship between pixels instead 

of only relying on single pixels to calculate the loss. 

Training data description 

The semantic segmentation model requires a set of aerial images and their corresponding labels to be 

trained. Two main data sources were used to create our training set: 1) high-resolution orthorectified 

imagery that is available across numerous U.S. and international cities, and 2) planimetric GIS data 

representing the same elements as seen in orthorectified images. 

High-resolution orthorectified imagery: A key input to detecting pedestrian infrastructure elements in 

our pipeline is sub-meter resolution orthorectified imagery. Raw aerial images inherently contain 

distortions caused by sensor orientation, systematic sensor and platform-related geometry errors, 

terrain relief, and curvature of the earth. Such distortions cause feature displacement and scaling errors, 

which can result in inaccurate measurement of distance, angles, areas, and positions, making raw 

images unsuitable for feature extraction and mapping purposes. Orthorectification removes these 

distortions and creates accurately georeferenced images with a uniform scale and consistent geometry. 

The orthoimagery tile system also makes it possible to convert between positional coordinates of tiles in 

x/y/z (where z represents the zoom level) and geographical coordinates. 

High resolution orthorectified images are becoming increasingly accessible. In the United States, U.S. 

Geological Survey (USGS) provides high-resolution orthorectified across almost the whole country. Many 

other countries across Europe, Asia, and the Global South also acquire high resolution orthorectified 

images and make them publicly available. For the purposes of this study, we used orthorectified images 

provided by Massachusetts, Washington, DC, and New York to train the model and pilot test the 

approach. We obtained 11,000 tiles from Washington, DC, 28,000 tiles from Cambridge, MA and 8,000 

tiles from inside NYC parks. Except for Washington, DC, where the tiles are 512x512-pixels, the rest of 

the tiles come in 256x256-pixels. We choose zoom level 20 for the 256x256-pixel tiles, where each pixel 

of the image represents 0.19 meters on the surface of the earth. Our experiments training the model 

with both sizes showed that the model would perform better using 512x512-pixel input images (an 
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increase of roughly 12% in mIoU). Hence, we used the tool to stitch every four neighboring 256x265-

pixel tiles to get 512x512-pixel images, creating a total of 20,000 tiles. 

Planimetric GIS data: Many GIS datasets have been created using planimetric mapping. Planimetric 

mapping involves extracting features from orthoimagery to create maps that only capture the horizontal 

distance between the features irrespective of elevation. Since planimetric data are created using 

orthorectified images, they are also suitable for creating labels for semantic segmentation models. An 

annotated image is a reference image where each pixel value describes the label to which the pixel in 

the aerial image belongs as shown in Figure 10-b,c,e,d. 

Figure 10. Examples of the mismatches between the aerial image and the label created from 
the official data. The manually corrected labels are shown in the last column. 

To prepare labels, Tile2Net primarily relies on available GIS data on sidewalk, crosswalk, and footpath 

locations in select city environments. In this study, we used the publicly available planimetric data on 

sidewalks, footpaths, and crosswalks in parts of Cambridge, Washington, DC, and selected sites from 

inside the parks of New York City. Reliance on existing GIS datasets allows us to prepare large-scale 

labels using GIS data rather than manually annotating a huge number of images. Tile2Net takes the 

bounding box of each tile, finds the corresponding sidewalk, footpath, crosswalk, and road polygons 

from given planimetric GIS data, rasterizes the GIS polygons into pixel regions, and outputs annotated 

image tiles with four total classes: sidewalks (including footpaths), crosswalks, roads, and background, 



23 
Exploring AI-based Video Segmentation and Saliency Computation to 

Optimize Imagery-acquisition from Moving Vehicles 

representing each class with a distinct color. These annotations are used as ground truth data for 

training the model. 

However, challenges remain in creating accurate and consistent training data. The first challenge arises 

from the lack of consistency between the mapping standards used by different municipalities. 

Moreover, since GIS data on pedestrian infrastructure does not necessarily reflect the exact conditions 

that are represented in our aerial images, there can be a temporal difference between tiles and GIS data 

as the creation of GIS data may have relied on a different underlying data source. As illustrated in Figure 

11, official GIS data can contain numerous errors. Human adjustment and correction may be necessary 

to bring ground truth labels into alignment with the image data. To achieve that, our research team 

manually corrected 2,500 tiles of the 12,000 training set, 1,620 image tiles out of 4,000 tiles that were 

used as our validation set, and 1,500 tiles out of 4,000 test set tiles. 

Figure 11. Boston Commons: a) Aerial image, b) Detected sidewalk and footpath polygons (in 
orange) and detected crosswalks (in red), c) Fitted sidewalk, crosswalk, and footpath 

centerlines superimposed on the aerial image. 

Implementation of the detection model 

The model was trained with a batch size of 16, SGD for the optimizer with polynomial learning rate, 

momentum 0.9, weight decay 5e-, and an initial learning rate of 0.002. The multi-scale setting used 0.5, 

1, 1.5, and 2, where a 0.5 scale denotes scaling the image down by a factor of two, and a scale of 2 

denotes scaling the image up by a factor of 2. We used color augmentation, random horizontal flip, 

random scaling, and Gaussian blur on the input tiles to augment the training data and improve the 

generalizability of the model. The crop size was set to 512x512. The aerial image and annotated image 

pairs were split into three parts:  60% of the tiles were used to train the model, 20% of the tiles to 

validate, and 20% were held-out to test the model in the final stage. To handle the class imbalance, we 

employed class uniform sampling in the data loader, which chooses equal samples for each class (classes 

like road and background are present in almost all images, whereas crosswalks can appear less 
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frequently), and the class uniform percentage was set to 0.5. The segmentation model was trained for 

310 epochs using 4 NVIDIA RTX8000 GPUs with 48 GB of RAM each. 

Training results 

The trained model outputs four classes in total, two of which were directly used to create the pedestrian 

networks (sidewalk including footpaths, and crosswalks), one—roads—was used to draw local attributes 

for fine tuning the network creation parameters, and the background, which contains all other elements 

not used in this study. To evaluate the performance of the model, we used the Jaccard index, commonly 

referred to as the Intersection over Union (IoU), which is a scale-invariant standard evaluation metric for 

semantic segmentation tasks. Class-specific accuracy measures are also calculated to assess the model's 

performance in classifying objects of different classes. We did not rely on the more biased pixel-level 

accuracy metrics since sidewalks and crosswalks comprise a small portion of each image, which would 

result in a significant class imbalance and an arbitrary high pixel-level accuracy. 

Table 2: Evaluation metrics on the test set. 

Label IoU (%) Precisions Recall 

Sidewalk 82.67 0.90 0.92 

Road 86.04 0.91 0.94 
Crosswalk 75.42 0.86 0.86 

Background 93.94 0.97 0.96 

mIoU (%) 84.51 

Table 2 presents the average IoU (mIoU) across all classes, as well as the class-wise IoU, precision, and 

recall. The model achieved 84.51% mIoU over all four classes, with sidewalks having 82.67% IoU and 

crosswalks having 75.42% IoU. The lower accuracy of the crosswalks can be attributed to the more 

temporal nature of the crosswalks and the fact that they can get faded and, in some cases, not even 

visible to human eyes.  

Using the trained model 

After the training phase is completed, the unlabeled orthorectified tiles are passed through the trained 

model, as shown in Figure 10-a the prediction model outputs a raster image where each pixel has a 

value corresponding to one of our four classes: sidewalk, crosswalk, road, and background (Figure 10-b). 

After the pedestrian features are detected from the input images, Tile2Net takes the model’s prediction 

in raster format and performs 1) raster to polygon conversion, which can save the output polygons in 

different formats such as GeoJSON and shapefiles, usable across multiple GIS tools (Figure 10-c); and 2) 

polygon to centerline conversion to create the final pedestrian network representation (Figure 10-d). 

Figure 11 shows the results of these last two steps for Boston Commons, which was not part of the 

training data.  
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Raster to polygon conversion: To obtain vectorized and georeferenced polygons from the detected 

sidewalk, crosswalk, and road highlight {raster regions}, we employed a connected-component mapping 

algorithm,in which the connected cells of the same category in the raster image form regions or raster 

polygons. These regions are then georeferenced, using an affine transformation, which preserves lines 

and parallelism and maps the raster pixels into the geographic coordinates. 

Polygon to centerline conversion: In the final step Tile2Net calculates the centerlines for each polygon. 

Given that the initially detected regions are pixel-precise, we first simplify the polygons using the 

Douglas-Peucker algorithm. Next, a dense Voronoi diagram is computed to extract the centerlines of the 

sidewalk polygons. The centerline is constructed by linking the internal Voronoi diagram edges not 

intersecting with the boundary of the object as shown in Figure 12.

Figure 12. Construction of centerline using Dense Voronoi method (DV) with different 
interpolation distances (d), which is the maximum distance between the sampled points 

(black points) on the polygon's boundary. 
The black line in the middle is the resulting centerline before any cleanups were applied. a) d=0.2 

resulting in a smoother line but with more extra branches, b) d=0.5 created less smooth line but no 

extra branches, c) d=2 resulted in a broken line. 

To clean and simplify the centerline, we trim branches shorter than an adjustable threshold. Crosswalk 

centerlines are created by joining the centroids of the smaller edges of the minimum rotated rectangles 

for each polygon. The crosswalk centerlines are then connected to their nearest sidewalk lines. The 

resulting vector lines form the basis of our pedestrian network. 

Following this step, the network goes through algorithmic post-processing operations to correct its 

topology: removing false nodes and removing the isolated lines. To close the small gaps, we use R-Tree 

and query for gaps smaller than certain thresholds. Then we extrapolate both lines to meet in the center 

of the gap. These operations help refine the detected pedestrian centerlines into a topologically 

continuous network while avoiding undue corrections and additions where connections between 

sidewalk segments are lacking. 
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Evaluation of Results 

This section presents the implementation details and results of using Tile2Net to create city-scale 

pedestrian networks in Cambridge, MA, Boston, MA, which was not used for training at all, New York 

City (where only footpaths in Manhattan parks were used for training) and Washington, DC. We 

evaluate the accuracy of the constructed maps—both polygons and centerlines—using the available 

official data of such elements from the respective cities). 

Figure 13 presents the model outputs in Boston and Cambridge, Manhattan, parts of Brooklyn, and 

Washington, DC. All cities are shown at the same scale for comparison. For polygon comparisons, 

comprehensive and public data for sidewalks, crosswalks, and footpaths, was available in Cambridge, 

and Washington, DC. In Boston, only sidewalk GIS polygons were available, and Manhattan’s sidewalk 

data includes the footpath polygons.  

Figure 13. Model results showing detected sidewalk, crosswalk and footpath centerlines: 
a) Boston and Cambridge, b) Manhattan and parts of Brooklyn, c) Washington, DC. The

maps are shown at the same scale for comparison. 

Table 3 presents class-level evaluation results for detected polygons, showing the total count and the 

percentage of ground-truth polygons (from the cities’ GIS data) that had a matching “detected” polygon 

spatially intersecting each element.  In Cambridge, 98.92% of all polygons in official GIS data had 

overlapped with polygons detected by Tile2Net. In Boston, the result was 98.72%, in Washington, DC, 

84.40%, and in Manhattan, 98.25%. Since most of the unmatched polygons were small in size, we also 

report the area-weighted overlap percentages in Table 3.  



27 
Exploring AI-based Video Segmentation and Saliency Computation to 

Optimize Imagery-acquisition from Moving Vehicles 

Table 3: Comparison of polygon accuracy results in Cambridge, MA, Boston, MA, New York 
City, NY, and Washington, DC. 

Measures Cambridge, MA Boston, MA Washington, DC New York City, NY 

Official data polygon count 17,516 24,604 52,087 4,684 
Match (overlaps with detected) 17,327 24,288 43,963 4,602 

Features Detected 98.92% 98.72% 84.40% 98.25% 
Features Detected (weighted by area) 99.62% 99.39% 97.48% 99.91% 

Mean Area Overlap (weighted by area) 85.90% 77.90% 73.80% 87.50% 

Feature detected indicates what proportion of polygons in the city dataset had a corresponding 

detected polygon that overlaps with it. Since many of the undetected polygons are small in area, we also 

report the percentage of detected features weighted by area. The mean area overlap area reports how 

close in area (from 0-100\%) the detected polygons are to the city dataset, on average (including those 

city polygons that remained undetected). 

The last row of Table 3 reports the mean aerial overlap percent between official GIS pedestrian 

infrastructure polygons and polygons detected by Tile2Net (also weighted by size). Analogous to IoU, 

this measure illustrates what percent of the area featured in the official pedestrian polygons overlaps 

with detected polygons. In Cambridge, 85.90% of the area of official GIS polygons was also covered by 

detected polygons, 77.90% in Boston, 73.80% in Washington, DC, and 87.50% in Manhattan. 

To evaluate the accuracy of the networks extracted from the imagery, we compared them against the 

publicly available sidewalk, crosswalk, and footpath centerline shapefiles of each city in Table 4. All 

three types of pedestrian infrastructure centerlines were available in Cambridge. In Boston, the sidewalk 

centerline dataset includes crosswalks, and in Manhattan, only footpath centerlines were available for 

comparison. However, in Cambridge and Boston, centerline data dates back to 2011.To investigate the 

reliability of the centerline data for evaluation, we analyzed the Cambridge data, where more recent 

polygon data (2018) are available for both sidewalks and crosswalks. We manually examined all the 

mismatch cases and removed the false positives (i.e., cases where a polygon was falsely selected as 

being a match). Our analysis showed a 23% change from 2011 to 2018 in crosswalks, while sidewalks 

change was 9.2%, which illustrates the gradual change of seemingly fixed urban features such as 

sidewalks over time.  
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Table 4: Comparison of network accuracy results in Cambridge, Boston, and Manhattan. 

City Measures All Sidewalk Crosswalk Footpath 

Cambridge 

Official element count 12,792 5,007 2,414 5,371 

Match (within 4m of centroid) 10,631 4,735 2,197 3,699 
Match 83.10% 94.56% 91.01% 68.86% 

Boston 

Official element count 110,031 54,864 11,223 37,023 

Match (within 4m of centroid) 86,372 49,806 10,051 23,978 

Match 78.49% 90.78% 89.56% 64.76% 

Manhattan 

Official element count - - - 6,239 

Match (within 4m of centroid) - - - 5,309 

Match - - - 85.09% 

To evaluate the accuracy of the generated network centerlines, we first marked the centroids of 

network segments from a corresponding city dataset and buffered the centroids by four meters 

(corresponding to 95th percentile sidewalk width in Boston). We then spatially joined these centroids 

with our detected segments using spatial intersection analysis in GIS. The results thus report cases 

where Tile2Net had generated a network element within 4m from a segment centroid in a city network 

dataset. We relied on centroids rather than full segments or endpoints to avoid matching intersecting 

line segments around network nodes. The results are reported in Table 4.  

In Cambridge, our model matched 83.10% of all segments, with notable heterogeneity among different 

types of elements. Among sidewalks, 94.56% of centerlines had a corresponding detected segment, 

among crosswalks, 91.01%, and among footpaths, 68.86%. The lower matching rates among footpaths 

were expected due to more frequent tree cover over footpaths in parks and green spaces. Network 

matching in Boston was fairly similar across the same network types. 90.78% of all sidewalk segments in 

city GIS data andc89.56% of all crosswalks were matched by our results. Footpath matching was again 

notably lower at 64.76%. In Manhattan, we only had official footpath networks (in parks) available from 

the city’s open data repository. Here, 85.09% of official footpath segments had a corresponding 

detected segment within a four-meter buffer of their centroid.  

Discussion 

While the automated pedestrian infrastructure mapping methodology we explored was able to capture 

a 90% or higher share of sidewalks and crosswalks featured in city GIS datasets, and a lower share of 

footpaths in parks, green areas, and other public spaces, a few caveats must be highlighted to interpret 

these results. First, the sidewalk, crosswalk, and footpath data available for validation in Cambridge, 

Boston, Washington, DC, and New York City are not necessarily temporally concurrent with the imagery 

we used for feature detection. This can lead to expected differences between ground truth and 

detected features. For instance, in Cambridge, the GIS data we used for validation was last updated to 

reflect the year 2010 flyover conditions according to the city’s metadata, but the image tiles we used as 

input for feature detection were captured in 2018. The Boston sidewalk and crosswalk centerline data 
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were last updated to reflect 2011 conditions, while our Boston image tiles were captured in 2018. Some 

pedestrian elements in views are therefore not featured in the cities’ GIS data and vice versa, possibly 

because they were altered before or after the images were captured. Our tests showed that the 

percentage change between data created based on 2010 flyovers and 2018 polygons was 9.2% for 

sidewalks and 23% for crosswalks. A similar proportion of matching differences is thus expected 

between the cities' GIS data and our results. 

Second, we also noted errors in the cities’ GIS datasets, where pedestrian infrastructure elements were 

missing or different from the Google Street View conditions dated to the same year. Given that the city 

datasets were likely prepared with a combination of automated feature detection and human 

correction, some error is expected. While these were the only data available to construct a quasi-official 

comparison of our results, these caveats are also partially responsible for the differences between 

detected and official pedestrian network elements. 

The lack of standardized training data across different cities also posed challenges in our work. For 

instance, different cities have captured and mapped sidewalks with varying levels of detail. In 

Washington, DC, unpaved planter areas were excluded from sidewalk polygons, whereas in Boston and 

NYC, they were included as parts of sidewalks. The same problem exists for curb extensions, medians, 

driveways, and curb-cuts. Crosswalk representation presented another source of variation among 

different cities. While they were mapped as part of sidewalk inventory data in Washington DC, in 

Boston, they were only presented in the sidewalk centerline dataset; hence, with no information 

available about their size and shape. In Cambridge, they were part of both the sidewalk centerline data 

and a separate dataset on road markings, where pedestrian zebras were represented as polygons. 

Beyond heterogeneity in training data, the physical features, materials, and dimensions of sidewalks and 

crosswalks can also vary between cities. We observed multiple instances of faded crosswalks that made 

it challenging for semantic segmentation to detect. We also noted differences in both sidewalk materials 

and crosswalk materials across cities. Whereas very few crosswalks are paved in brick in NYC, they are 

common in Cambridge and Boston. Had we trained the algorithm on NYC alone, it could have resulted in 

systemic under-detection in Boston and Cambridge. Such differences are bound to be bigger between 

international cities, where construction materials, crosswalk marking conventions, and infrastructure 

dimensions vary more considerably than between the three East Coast cities included in our study. 

Having pedestrian paths represented as continuous, topologically connected network datasets could 

open up new (and overdue) efforts for pedestrian routing, flow analysis, and potential location-based or 

delivery services. Transit-first policies, walkable-streets initiatives, step-free access for public transport, 

and vision zero goals represent but few planning and policy areas which could benefit from citywide 

sidewalk and crosswalk datasets. 
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